Discrete Geodesic Calculus in Shape Space
نویسنده
چکیده
Based on a local approximation of the Riemannian distance on a manifold by a computationally cheap dissimilarity measure, a time discrete geodesic calculus is developed, and applications to shape space are explored. The dissimilarity measure is derived from a deformation energy whose Hessian reproduces the underlying Riemannian metric, and it is used to define length and energy of discrete paths in shape space. The notion of discrete geodesics defined as energy minimizing paths gives rise to a discrete logarithmic map, a variational definition of a discrete exponential map, and a time discrete parallel transport. This new concept is applied to a shape space in which shapes are considered as boundary contours of physical objects consisting of viscous material. The flexibility and computational efficiency of the approach is demonstrated for topology preserving shape morphing, the representation of paths in shape space via local shape variations as path generators, shape extrapolation via discrete geodesic flow, and the transfer of geometric features.
منابع مشابه
Discrete geodesic calculus in the space of viscous fluidic objects
Based on a local approximation of the Riemannian distance on a manifold by a computationally cheap dissimilarity measure, a time discrete geodesic calculus is developed, and applications to shape space are explored. The dissimilarity measure is derived from a deformation energy whose Hessian reproduces the underlying Riemannian metric, and it is used to define length and energy of discrete path...
متن کاملDiscrete Geodesic Regression in Shape Space
A new approach for the effective computation of geodesic regression curves in shape spaces is presented. Here, one asks for a geodesic curve on the shape manifold that minimizes a sum of dissimilarity measures between given twoor three-dimensional input shapes and corresponding shapes along the regression curve. The proposed method is based on a variational time discretization of geodesics. Cur...
متن کاملVariational Time Discretization of Geodesic Calculus
We analyze a variational time discretization of geodesic calculus on finiteand certain classes of infinite-dimensional Riemannian manifolds. We investigate the fundamental properties of discrete geodesics, the associated discrete logarithm, discrete exponential maps, and discrete parallel transport, and we prove convergence to their continuous counterparts. The presented analysis is based on th...
متن کاملHoph Hypersurfaces of Sasakian Space Form with Parallel Ricci Operator Esmaiel Abedi, Mohammad Ilmakchi Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
Let M^2n be a hoph hypersurfaces with parallel ricci operator and tangent to structure vector field in Sasakian space form. First, we show that structures and properties of hypersurfaces and hoph hypersurfaces in Sasakian space form. Then we study the structure of hypersurfaces and hoph hypersurfaces with a parallel ricci tensor structure and show that there are two cases. In the first case, th...
متن کاملComplete Shape Metric and Geodesic
We develop the framework for moving domain and geometry under minimal regularity (of moving boundaries). This question arose in shape control analysis and non cylindrical PDE analysis. We apply here this setting to the morphic measure between shape or images. We consider both regular and non smooth situations and we derive complete shape metric space with characterization of geodesic as being s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012